On the Identities of Symmetry for the ζ-Euler Polynomials of Higher Order

نویسندگان

  • Taekyun Kim
  • Kyoung Ho Park
  • Kyung-won Hwang
چکیده

The main purpose of this paper is to investigate several further interesting properties of symmetry for the multivariate p-adic fermionic integral on Zp. From these symmetries, we can derive some recurrence identities for the ζ-Euler polynomials of higher order, which are closely related to the Frobenius-Euler polynomials of higher order. By using our identities of symmetry for the ζEuler polynomials of higher order, we can obtain many identities related to the Frobenius-Euler polynomials of higher order.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$

Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...

متن کامل

Identities of Symmetry for Generalized Higher - Order q - Euler Polynomials under S 3 Dmitry

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we study the identities of symmetry for the generalized higher-order q-Euler polynomials in three variable under symmetry group S 3 which are derived from the...

متن کامل

Viewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials

In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.

متن کامل

IDENTITIES OF SYMMETRY FOR THE HIGHER ORDER q-BERNOULLI POLYNOMIALS

Abstract. The study of the identities of symmetry for the Bernoulli polynomials arises from the study of Gauss’s multiplication formula for the gamma function. There are many works in this direction. In the sense of p-adic analysis, the q-Bernoulli polynomials are natural extensions of the Bernoulli and Apostol-Bernoulli polynomials (see the introduction of this paper). By using the N-fold iter...

متن کامل

Some identities of symmetry for the degenerate q-Bernoulli polynomials under symmetry group of degree n

Recently, Kim-Kim Introduced some interesting identities of symmetry for qBernoulli polynomials under symmetry group of degree n. In this paper, we study the degenerate q-Euler polynomials and derive some identities of symmetry for these polynomials arising from the p-adic q-integral on Zp. AMS subject classification: 11B68, 11S80, 05A19, 05A30.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009